Temperature Regulation for Li-ion Cells

Hsin Wang, Sreekanth Pannala, and Srikanth Allu, Oak Ridge National Laboratory Keith Kepler, Farasis Energy

Novel Thermal Management for Large Format, Hi-capacity Lithium-ion Cells

Concept

Thermal Conductivity of Li-ion Cells

Motivation and Design

Thermal conductivity is 20-30 times higher in-plane than through thickness in a Li-ion cell. Cell temperature can only be controlled by surface cooling.

Our project is focusing on a new cell design utilizing the excellent heat conductors (Cu and Al) inside the cell to allow cooling from the side to achieve uniform temperatures throughout the cell.

Exploit the high conductivity of the current collectors

Advantages of Side-cooling

- Ideal for high power applications
- Can create thick cells for high capacity
- Naturally scalable to modules and pack without significant additional mechanical and other protection

Cell Level Performance

Cycle Life

Hybrid Cooling Setup

New Cell Design

New Aspect Ratio

- Minimum temperature gradient within each layer
- No temperature gradient through thickness

New Module Design

arpa.e

Advantages of New Design

- Control: Temperature control for safer and long-lasting battery
- Safety (single cell): provide faster heat removal to prevent thermal runaway, especially near cells perimeters
- Safety (cell-to-cell): Thick cell is more compressible and absorb higher impact force
- Safety (cell-to-cell): Prevent cellto-cell fire propagation
- Multifunctional: Cooling connections can become a cellular network with mechanical properties to improve safety without adding additional weight

Team

ORNL:

Hsin Wang

wangh2@ornl.gov

Sreekanth Pannala

pannalas@ornl.gov

Srikanth Allu

allus@ornl.gov

Farasis:

Keith Kepler

kkepler@farasis.com

Dana:

John Burgers

This work is supported by DOE ARPA-E AMPED program. Patents on this technology have been filed by ORNL and Farasis. Please contact the technical lead for more information.

